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A simple second-order perturbation expansion is proposed for systems consisting of simple sphe
rical molecules with pair interaction potential involving a soft repulsion term utilizing the Weeks
Chandler-Andersen (WCA) choice of the reference system. The second-order perturbation term 
is approximated by the Barker-Henderson (m.c.) expression. The relations are formulated for the 
compressibility factor, internal energy and the Helmholtz function and further used to determine 
the thermodynamic functions of argon (for the Lennard-Jones 12-6 potential) at the reduced 
temperature 0'75, 1'15, 1·35 and 2·74 and the reduced density ranging between 0-1 '0. The com
puted values were compared with the Monte-Carlo data and those following from WCA first-order 
theory. 

A basic idea of perturbation theories, representing at present a most advanced 
method of statistico-thermodynamic description of state and thermodynamic beha
viour of fluids, rests in expressing the potential energy of the studied system as a com
bination of the 'potential energy of the reference system plus the perturbation energy. 
The latter is substantially smaller than the former. 

Of a number of perturbation theories, summarized e.g. in cit. 1 ,2, pertaining to fluids consisting 
of simple spherical molecules appears best the Barker-Henderson second-order3 expansion and 
the approach of Weeks, Chandler and Andersen4

,5. Barker and Henderson have found by study
ing a system of particles interacting according to the square-well model potential that the first 
order expansion is insufficient to describe the behaviour of fluids in liquid region. Expressing 
the energy of the system as a function of the number of pairs of molecules with a certain distance 
the authors have succeeded to approximate the second order perturbation term by the so-called 
m.c. (macroscopic compressibility), or I.c. (local compressibility), expressions of which the first 
appears somewhat simpler. The computations have shown the second-order perturbation ex
pansion to give a better fit of the theoretical and pseudo-experimental data than the first-order 
one. The differences when using either m.c. or I.c. approximations are insignificant. Later, Smith, 
Barker and Henderson6 determined the second order term by superposition approximation. 
They obtained considerably more complex expression, which, moreover, did not yield a substantial 
improvement of the fit of the thermodynamic functions. When using the perturbation theory 
for systems with "soft" repulsions, where the pair interactions are given e.g. by the Lennard-Jones 
12-6 potential (LJ 12-6), Barker and Henderson assumed the repulsions to be described 
by this potential in the range r < 0' (where 0' is a characteristic length); the attractive forces were 
expressed by the same potential in the range r > 0'. The mentioned division and the corresponding 
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choice of the reference system lead to a more slowly converging expansion than that in the case 
of the reference system according to Weeks, Chandler and Andersen4 ,5 (WCA). The latter authors 
assumed the whole part of the potential curve to the left of the potential minimum to correspond 
to repulsion and for the pair potential of the system they took LJ 12-6 potential increased 
by a value of the energy of the minimum (for r < 21

/
6 a). Verlet's calculations 7 for LJ 12- 6 

have shown an excellent agreement of the theoretical values with the Monte Carlo results mainly 
at high densities. For the square well potential, however, the WCA relations change into the 
first order expansion investigated by Barker and Henderson. Recently, Alder Young and Mark 
have studied a system with the square well potential by the molecular dynamics8 and confirmed 
clearly that the second-order term in the perturbation expansion is important while the contribu
tion of all higher-order terms is negligible. At the same time they conclude that the Barker-Hender
son approximative expression for the given potential yields a good agreement with the Monte 
Carlo results. 

In this paper a second-order perturbation expansion is proposed for WCA choice 
of the reference system. 

In the proposed approach the radial distribution function of the hard spheres 
is approximated by a straight line in the neighbourhood of the closest approach 
distance. This approximation permits an easy determination of the diameter of the 
representative hard spheres to be made. 

THEORETICAL 

For a one-component system formed by N spheres in a volume Vat a temperature T 

the perturbation expansion of the second order takes the form9 

(1) 

where F and F 0 are the configuration free energy of the studied and the reference 
system, resp., f3 = (kTt 1, k is the Boltzmann constant and Q1' Q2 are the first- and 
second order perturbation terms. The first of these terms may be expressed on the 
basis of the distribution function goer) of the reference system 

(2) 

where r is the distance of the interacting particles, up(r) is the perturbation pair 
potential and n = NjV is the particle density. For the second order perturbation 
terms Barker and Henderson have found the following approximative formulas 

(3a) 
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or 

Q2(1.C.) = 2nNnkT - - n u~(r) go(r) r2 dr . ( an) a foo 
ap 0 an 0 

(3b) 

The expressions in the perturbation expansion (1) were determined without prior 
specification of the reference system; one may thus choose WCA. If u(r) is the pair 
potential of the studied system then for the pair potential of the reference system, 
uo(r); we have 

(4) 

uo(r) = 0, 

(where r m is the distance of the pairs of molecules corresponding to the minimum 
of the potential energy and u(r m) = -8). The perturbation potential is given by 

The choice of the referen<;e system is associated also with the approximation of the 
distribution function. For the above reference pair potential it proves useful to as
sume that 

(6), (7) 

Subscript h indicates the function of a system of hard spheres of diameter dh' This 
diameter is choosen so as to satisfy 

Determining the hard sphere diameter in this way allows then the free energy of the 
reference system to be calculated easily because F 0 is given very precisely by the func
tion Fh for hard spheres of the diameter dh from Eq. (8)4.5. 

The last relation may be alternatively written, considering Eqs (4) and (5), as 

(9) 

which considerably simplifies evaluation of the integrals in Eqs (2) and (3) in region 
(0 - r m), where the perturbation potential has a constant value u(r m). For the first 
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order perturbation term one may then write 

Q1 = 2rrNn { u(r m) I~ Yh r2 dr + 1: Yhu(r) r2 dr } = 

= 2rrNn {u(r m) f,m Yhr2 dr + f a) Yhu(r) r2 dr - f,m Yhu(r) r2 dr} . (10) 
dh dh d h 

The first and the third term of the last equation may be combined to give a single 
integral, see Eq. (4). The function Yh in the second term equals the radial distribution 
function gh(r) in the whole range r ~ dh' For the Percus-Yevick (PY) approximation 
of the radial distribution function the . second integral may then be determined 
by means of the Laplace transform10 of the function xg(x) (where x = rjdh), which 
shall be denoted as G(s) = L{xg(x)}. If u*(x) is the pair potential of the studied 
system divided bye, and U 1(s) is the inverse Laplace transform of xu*(x) then for 
/3Q1 we have 

(11) 

In the last equation y = rrndV6, the reduced temperature is defined as T* = kTje 
and u~(x) = uo(x)je. 

In a similar way one may arrange also the second-order perturbation term: If Uis) 
is the inverse Laplace transform of the function x U*(X)2 we have 

where unity in the second term corresponds to the value u2 (r m)je2
• The factor 

kT(8nj8P)o for the reference system may be again approximated by the function 
for a system of hard spheres of diameter dh from Eq. (9). 

With regard to the properties of the function exp [ - /3uo(r)] the integrand 
Yh exp [ - /3u o] takes non-vanishing values only for distances differing little from r m' 

The function Jh may therefore be expressed in thi& narrow interval by the following 
linear relation 

Jh(x) = A + Bx, (13) 
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where the parameters A and B are determined by the value of function g and its 
first derivative with respect to x in the point of contact (x = 1). 

Denoting the ratio dh/a by c, where a is the characteristic dimension of the pair 
potential u(r), one may then obtain from Eq. (9) an expression 

providing for a relatively easy determination of c and hence dh for the studied pair 
potential. The integrals I j in Eq. (14) depend only on the form of the potential function 
and the temperature 

f
rm/a 

I j = 0 exp [ -puo(z)] zJ dz, z = rja. (15) 

Since the integration limits of the second integrals in Eqs (11) and (12) delimit 
a very narrow interval, one may also utilize the approximation expressed in Eq. (13) 
to evaluate Yh analytically. Substituting for Ql and Q2 in Eq. (1) we get 

(16) 

where 

For the compressibility fLctor of the studied system we have 

- = f - + - H(s)U1(s)ds-PV {Po V I2y f'" 
NkT NkT T* 0 

-~ [(_1_. )' y f'" G(s) Uz{s) ds --I-f'" H(s) U2(s) dsJ} + 
T*2 p(aPjan) 0 . p(aPjan) 0 . 

+ I2Y f'" (~)(aUl)G(S)dS - ~ -I-f'" (~)(au2)G(S)dS + 
T* 0 an ac T*2 p(ap/an) 0 an ac 

a { 12y 6y } + n - - - [ AJ 2 + BJ 3] - 2 ( j [AK2 + BK3] , 
an T* T* P ap an) 

(18) 
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where the second term in the factor f = 1 + 3(nle) (aelan) is usually negligible. 
[ljp(aPjan)]' denotes derivative with respect to y and the function H(s) is given 
by the derivative ayGlay. 

For the internal energy U it follows from Eq. (16): 

- = ~ G(s) UI(s) ds - [Al2 + Bl3J -U 12 {f CO } 
NkT T* 0 

12y {f CO G(s) U (s) ds - [AK + BK J} - T* a(FINkT) ~ 
T*2p(aplon) 0 2 2 3 ae oT*' 

(19) 

where the last term appears as a consequence of the fact that the diameter of the 
hard spheres depends on temperature. 

RESULTS AND DISCUSSION 

Throughout this work we have adopted the Lennard-Jones potential. The reason 
for this choice was that LJ 12 - 6 system is the best known of those involving soft 
repulsions. Moreover, numerous pseudo-experimental data for a number of tempera
tures and densities are available for this system. The equations for the reference and 
perturbation pair potentials then take the form 

and 

where r m = 21
/
6

(J. 

For a system of hard spheres we have made use of the Carnahan Starlingll equation 
of state 

(21) 

The values of the radial distribution function at the closests approach distance 
following from this equation were used jointly with the derivative of P Y approxima
tion of the direct correlation function in the point x = 1 to determine the coef
ficients in Eq. (13). For A and B we thus get 

A = (1 + 4y + 9y2j2)/(1 - y)3, B = -9y(1 + y)j2(1 _ y)3 . 
(22), (23) 
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TABLE I 

A Comparison of the Compressibility Factor (z), the Free Energy (F) and the Internal Energy (U) 
of a System of LJ 12- 6 Particles Computed from the Second-Order Perturbation Theory with 
those from the Verlet-Weis First-Order Theory a nd the Monte Carlo Data 

2nd _order 1st order MC 

na3 z l:'I NkT U/ Ne F/ NkT U/ N e F/NkT U/ Ne 

T* = 0-75 

0-1 0-31 -0-72 - 0-80 0-42 -0-55 -0,56 0·23 - 0·80 -1,15 
0·2 - 0·30 -1,38 -1·51 -0'24 - 1,15 -1,19 - 0,29 -1,48 -1 -90 
0·3 - 0,93 -2,03 - 2'21 -0,93 - 1'79 -1 '87 - 0'78 - 2,10 - 2'58 
0·4 -1,51 -2,67 -2·93 -1'58 - 2,43 -2'62 - 1,20 - 2·68 - 3,21 

0·5 -1 ,97 -3,28 -3,66 -2,07 - 3,06 ":: 3'40 - 1,69 - 3'22 - 3-73 
0·6 -2,15 - 3,84 -4-43 - 2,24 -3,65 -- 4'20 - 2,05 - 3,73 - 4,36 
0·7 -1·77 - 4,31 -5,17 - 1,86 - 4,12 - 5,00 - 1,71 - 4'1 7 -5,07 

0·8 - 0-49 - 4,62 -5·86 -0,56 - 4-43 - 5,75 -0,53 -4-47 -5,78 

0·84 0·36 -4·68 - 6'12 0·32 - 4-49 -6,02 0·37 - 4'53 - 6,04 

T* = 1·15 

0·1 0·65 - 0'37 - 0,71 0·70 -0,29 -0,55 0·61 - 0,38 - 0·86 
0·2 0·33 - 0 '71 -1-39 0·37 -0,61 -1-17 0·35 - 0,73 - ],55 

0·3 0·04 - 1,04 -2,07 0·05 -0,92 -1'84 0·12 - 1,05 -2,24 

0·4 -0'17 - 1'34 -2'77 -0,19 -1 ,23 -2-55 -0-09 - 1,34 - 2,85 

0-5 -0-25 - 1-62 -3-48 -0,27 - I-51 -3-29 - 0-13 - 1'59 - 3,47 

0-6 -0-08 -1-83 - 4-25 -0,08 -1-73 - 4,03 0·07 - 1-78 - 4']4 
0-65 0·15 -1,91 - 4,60 0-17 -1,81 - 4,40 0·31 - 1-84 - 4'45 
0·75 1·05 -1-98 - 5-28 HO -1,87 -5,09 1-17 -1·89 - 5·]3 
0-85 2·76 -1 ,88 - 5,69 2·83 -1'76 - 5,68 2·86 -1-78 - 5,67 

T* = 1·35 

0·1 0·73 -0,28 - 0,69 0-77 - 0-22 -0,55 0·72 -0-29 -0'78 
0-2 0·50 -0,53 -1-36 0-53 -0'46 -1-16 0·50 - 0-56 -I -51 
0-3 0·31 -0,77 - 2,03 0·32 -0-69 - 1'82 0·35 -0-80 -2,09 

0-4 0-19 -0,99 - 2-72 0·18 -0-91 -2-52 0-27 -1 -00 - 2-75 
0·5 0-20 -1 ,17 -3-40 0-20 ..,..1 -09 - 3-24 0-30 -1-]6 -3-37 
0-55 0-30 -1-24 -3-77 0-30 - 1-16 -3 ,60 0-41 - 1,22 -3,70 

0-7 1-09 -1-34 - 4-83 1-15 - 1-25 -4-64 1-17 -1 ,29 -4,68 

0·8 2-33 -1,25 - 5-38 2·42 - 1,15 -5,24 2-42 -1 -19 -5-25 
0-9 4-52 - 0,98 - 5,99 4-53 - 0'87 -5-70 4-58 -0'91 -5-66 
0-95 5·91 -0-75 - 6-23 5·97 - 0-64 - 5-84 6-32 -0-67 -5,71 
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TABLE I 
(Continued) 

2nd order 1st order Me 

na3 P/NkT UINe PINkT UINe PINkT UIN e 

T* = 2·74 

0·1 0·98 -0·02 -0·57 0·98 -0·02 -0·52 0·97 - 0·03 -0·61 
0·2 0·99 -0·03 -1·16 0·99 - 0·03 -1·08 0·99 - 0·05 - 1·21 
0·3 1·05 - 0·03 - 1·75 1·05 -0·02 - 1·67 1-04 - 0·05 - 1·78 
0-4 1-18 0·00 - 2·35 1·19 0·01 - 2·28 1·20 - 0·01 -2·37 
0·55 1·62 0·11 - 3·25 1·65 0·07 -3·16 1·65 0·06 - 3·21 
0·7 2·54 0·36 -3·97 2·62 0·39 -3·92 2·64 0·37 - 3·90 
0·8 3·59 0·63 -4·33 3·70 0·67 - 4·27 3·60 0·65 -4·28 
0·9 5·15 1-02 - 4·53 5·24 1·07 - 4·43 5·14 1·04 - 4·41 
1·0 7·41 1·56 - 4·56 7·35 1·63 -4·31 7·39 1·58 - 4·18 

From the equation of state (21) we have determined also the compressibility of the 
system of hard spheres 

(24) 

as well as an expression for the free energy of the reference system 

(Fa - F*)/NkT = (4y - 3y2)/U _ y)2 . (25) 

In case of LJ 12 - 6 potential one may find analytical expression of the integrals 
J 1, J 2, K2 and K3 

J 2 = 4C- 12/9 - 4c- 6 /3 + 8(2)1/2 c- 3/9 - 1/3, (26) 

J 3 = C- 12/2 - 2c- 6 + 9(2)2/3C-4/8 - 1/4, (27) 

K2 = 16c- 24/21 - 32c- 18 /15 + 16c- 12/9 - O·79016c- 3 + 1/3, (28) 

K3 = 16c- 24/20 - 32c- 18/14 + 2C - 12 - O·81638c - 4 + 1/4. (29) 

Substituting Eqs (22) through (29) into Eq. (16) we arrive at the expression permit
ting a relatively easy determination of the free energy of the system studied. For 
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a given temperature and density one has to evaluate c from Eq. (14). As a first estimate 
of c in the iteration approach we used 

(30) 

following from consideration regarding the behaviour of the Mayer function for the 
reference potential. 

Eq. (16) was then used to calculate the free energy while the explicit expressions 
for the integrals were evaluated numerically. Also the derivative with respect to den
sity in Eq. (18) and the last term in Eq. (19) were evaluated numerically. 

The results of the calculations for T* = 0·75, 1'15, 1'35, and 2·74 and the density 
ranging between 0 and 1 are shown in Table I with the pseudoexperimental data 
of the Monte Carlo (MC) method and the values from the Verlet-Weis first order 
perturbation expansion12 . From comparison it follows that the second-order terms 
improve the agreement of the perturbation values with the pseudoexperimental 
data of the compressibility factor, the free and internal energy at low temperature 
and densities in particular (approximately up to n(J3 = 0'6). The best improvement 
may be 0bserved in case of the internal energy. Certain deterioration in region of high 
densities in comparison with the results of the Verlet-Weis first order expansion 
stems most likely from a simpler (and less accurate) expression of the radial distribu
tion function of the system of hard spheres used in this work. 

It may be concluded that the second-order term in the perturbation expansion 
of WCA for the Lenard-Jones 12-6 potential provides in liquid region a better 
prediction of the state and thermodynamic functions in comparison with previous 
perturbation methods. . 
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